CH301H – Principles of Chemistry I: Honors

Fall 2016, Unique 50015 Homework, Week 10

- 1. Construct the MO diagram of all period 2 homonuclear diatomics (you should have already done this on your own). For each molecule, determine the bond order, and determine whether the MO diagram gives a molecular electron configuration that is similar to or different from the prediction of the Lewis dot structure.
- 2. Sketch the shapes of the σ and π molecular orbitals for the H_2^+ molecule. Figure 6.5 in your book is a good reference, but don't just copy the figures make sure you understand their shape.
- 3. Define the σ and π ground state molecular orbitals.
- 4. Predict which molecule has the greater bond length, H₂ or He₂⁺. Justify your answer.
- 5. Construct the MO diagram of CN. Do your molecular orbitals give you an electron configuration that is similar to or different from the prediction of the Lewis dot structure?
- 6. The bond length of the transient heteronuclear diatomic CF is 1.291 Å. When this is ionized, the molecular ion CF⁺ has a bond length of 1.173 Å. Using an argument based on the MO diagram, explain why the CF bond shortens with the loss of an electron.
- 7. Fluorine gas can be ionized in the gas phase to produce F_2^+ . For both F_2 and F_2^+ , determine the following (you can use your MO diagram from problem 1, or redraw it for each of these species):
 - a) Molecular electron configurations;
 - b) Bond order;
 - c) Predict which molecule has the greater bond dissociation energy. Justify your answer.