CH301H - Principles of Chemistry I: Honors

Fall 2016, Unique 50015

Homework, Week 3

- 1. From data in Tables 3.1 and 3.2, determine the bond dissociation energy for NaCl, which has an equilibrium bond length of 2.36~Å.
- 2. Draw the Lewis dot structure of each of the following molecules, including all resonance structures. Determine the formal charge on each atom.
 - a) P₄
 - b) HNO
 - c) XeF⁺
 - d) XeF₂
 - e) SCN
 - f) H₃NBF₃
 - g) CH₃COO⁻
 - h) HCO₃
- 3. Ozone (O_3) has a nonzero dipole moment. Draw the Lewis dot structure of O_3 and determine which of the following structures are possible for the molecule: linear and symmetric, linear and nonsymmetric, or bent.
- 4. Arrange the following covalent diatomic molecules in order of a) increasing bond length and b) increasing bond energy: BrCl, IBr, BrF.
- 5. For each of the following pairs of molecules, determine which molecule has the higher vapor pressure at room temperature.
 - a) CI₄ versus KI
 - b) BaF₂ versus OF₂
 - c) SiH₄ versus NaH
- 6. In the water molecule, each O-H bond has a dipole moment. Because of the structure of the molecule, these two bond dipole moments lead to a molecular dipole moment. Show that if μ_{OH} is the dipole moment of the O-H bond and θ is the angle between the two O-H bonds, then the molecular dipole moment of water, μ_{H2O} is

$$\mu_{H2O} = 2\mu_{OH} \cos\left(\frac{\theta}{2}\right)$$

The molecular dipole moment of water is 1.86 D. What is the O-H bond dipole moment?