CH302H – Principles of Chemistry II: Honors Spring 2014, Unique 51880

Quiz 5 17 April 2014

I know we all enjoyed our discussions last Thursday. Let's apply our new found knowledge:

Consider making a solution with the following initial composition:

 2.2×10^{-4} F Hg₂(NO₃)₂ and 1.2×10^{-4} F Fe(NO₃)₂ in a pH=3.00 buffered solution.

The question is whether Hg_2^{2+} will oxidize Fe^{2+} to Fe^{3+} ... and to what extent?

The reactions of interest are:

Fe³⁺ + e⁻ → Fe²⁺ E^o = +0.77 V Hg₂²⁺ + 2e⁻ → 2Hg_(l) E^o = +0.90 V

My request is quite simple: After this is mixed and the system comes to equilibrium, I stick a Hg electrode in the solution along with an SCE (saturated calomel reference electrode, $E^{o} = +0.24 \text{ V}$) into the solution and measure the potential of the Hg electrode relative to the SCE (which is used as the anode). What E_{cell} voltage do I read? (Note: A hanging Hg drop is a typical electrode in electrochemistry. From the perspective of the iron system, it looks like an inert (e.g., Pt) electrode. Be concerned only with redox reactions in this problem.)

(Hint: To begin, will Hg_2^{2+} oxidize Fe^{2+} to Fe^{3+} ... and to what extent?)

Hgs + 2 Fe - 2 Fe" +2Hg(e) $F = [H_{y_2}^{2+1}]_0 = 2.2 \times 10^{-4} M; F = [F_0^{2+1}]_0 = 1.2 \times 10^{-4} M.$ A Find K for reaction. $log k = \frac{+n.E^{\circ}}{0.059}$ or $k = 10^{nE_{0.059}^{\circ}}$ F= 0.90-0.77 n=2. $K = 2.6 \times 10^{4}$ (B) Find agridit conc. $K = \frac{\int Fe^{3+7^2}}{\int H_{7_{2}}^{3n} \int \int Fe^{7+7^2}} (Fe^{7+7}) = X$ $(Fe^{7+7}) = \beta - X$ $\begin{bmatrix} u \\ Hq_2 \end{bmatrix} = \alpha - \frac{\chi}{2}$ $\left(\begin{array}{c} (x - \frac{x}{z}) (\beta - x)^{2} \\ (x -$ Use Fe conc $\rightarrow E_{cell} = E_{Fe}^{\circ} - 0.059 \log \frac{[Fe^{3H}]}{[Fe^{3H}]} - 0.24 = 0.55V$ O use $H_{g_{2}}^{c+}$ conc $E_{cell} = E_{H_{g_{2}}}^{o} - \frac{0.059}{2} \log \frac{1}{[H_{g_{2}}^{2+}]} - 0.241 = 0.55 \sqrt{\frac{1}{2}}$