CH353 - Physical Chemistry I

Spring 2012, Unique 52135

Homework, Week 10

- 1. Determine ΔG_{rxn}^{θ} and K_P at 298 K for each of the following reactions:
 - a) $N_2O_4(g) \Leftrightarrow 2 NO_2(g)$
 - b) $H_2(g) + I_2(g) \Leftrightarrow 2 HI(g)$
 - c) $3 H_2(g) + N_2(g) \Leftrightarrow 2 NH_3(g)$
- 2. The synthesis of ammonia is given by the formula

$$N_{2(g)} + 3 H_{2(g)} \Leftrightarrow 2 NH_{3(g)}$$

- a) If you begin the reaction with n_0 moles of $N_{2(g)}$ and $3n_0$ moles of $H_{2(g)}$, find an exact expression for z_{eq} . Use this expression to discuss how z_{eq} varies with P and relate your conclusions to Le Chatelier's principle.
- 3. Sufuryl chloride, SO₂Cl₂, decomposes to sulfur dioxide and chlorine gas:

$$SO_2Cl_2(g) \Leftrightarrow SO_2(g) + Cl_2(g)$$

 $\Delta G_f^0(SOCl_2) = -371.3 \text{ kJ/mol}, \Delta G_f^0(SO_2) = -300.2 \text{ kJ/mol}.$

- a) Determine the equilibrium concentrations of each species if the system initially contains 1 mole of SO₂Cl₂ and 0 moles of SO₂ and Cl₂ at 1 bar
- b) Determine the equilibrium concentrations of each species if the system initially contains 1 mole of SO₂Cl₂, 1 mole of SO₂, and 0 moles of Cl₂ at 1 bar.
- c) Describe any differences according to Le Chatelier's principle.
- 4. The water-gas shift reaction is an important industrial source of pure $H_2(g)$ for ammonia synthesis:

$$\mathrm{CO}(g) + \mathrm{H_2O}(g) \Longleftrightarrow \mathrm{H_2}(g) + \mathrm{CO_2}(g)$$

What would happen to the equilibrium concentration of each species if you increase the total pressure of the system by a factor of 100?

- 5. Until recently, values of K_P were reported assuming a standard state of 1 atm. Determine a general equation for converting K_P values at 1 atm to 1 bar.
- 6. Under certain conditions, water vapor dissociates into $H_2(g)$ and $O_2(g)$. At 2000 K and 1 bar, water vapor is 0.53% dissociated. At 2100 K and 1 bar, it is 0.88% dissociated. Determine the enthalpy of the dissociation reaction, assuming it is constant over this temperature range.