CH353 – Physical Chemistry I

Spring 2015, Unique 51170

Homework, Week 12

- 1. Interstellar space has an average temperature of 10 K and average density of hydrogen gas of about 1 molecule m⁻³. Determine the mean free path of hydrogen gas in interstellar space. You may assume that $H_2(g)$ is a sphere of diameter 1.15 Å (1 Å = 10^{-10} m and is a convenient unit of length in chemistry).
- 2. The following table describes the pressure and temperature of Earth's upper atmosphere as a function of altitude:

altitude (km)	P (bar)	T(K)
20.0	0.056	220
40.0	3.2×10^{-3}	260
60.0	2.8×10^{-4}	260
80.0	1.3×10^{-5}	180

Assuming that the atmosphere is composed of 80% $N_2(g)$ and 20% $O_2(g)$, determine the frequency of collisions between nitrogen and oxygen gas at each of these altitudes. You may assume the molecules are spheres with a diameter of 3.8 Å for $N_2(g)$ and 3.6 Å for $O_2(g)$.

- 3. A sample of argon gas is held in a 1 L vessel and maintained at 25°C. At what pressure does the mean free path of the gas become comparable to the size of the container? You may assume the diameter of the argon atom is 1.9 Å.
- 4. The interior of the Sun is thought to consist of 36% H and 64% He by mass, at a density of 158 g cm⁻³. Both atoms are completely ionized. The approximate dimensions of the nuclei can be calculated from the formula $r_{nucleus} = 1.4 \times 10^{-15} A^{1/3}$ m, were A is the mass number. (The size of the free electron is 10^{-18} m, and is negligible compared to the size of the nuclei.) The pressure in the stellar interior is thought to be 2.5×10^{11} atm.
- a) Determine the excluded volume of 1.0 cm³ of the stellar interior based on this model. The excluded volume is the volume of a sphere of radius equal to the sum of the radii of the collision pair.
- b) Determine the temperature in the stellar interior based on this model. Would the van der Waals equation be more appropriate for this system?

5. The rate law for a certain reaction is reported to be:

$$\frac{d[C]}{dt} = k[A][B][C]$$

What are the units of k?