Always assume ideal gas unless directed otherwise.
You may use any material that does not have a heartbeat and does not connect to the internet or cellular network.

Honor Code:
"The core values of the University of Texas at Austin are learning, discovery, freedom, leadership, individual opportunity, and responsibility. Each member of the University is expected to uphold these values through integrity, honesty, trust, fairness, and respect toward peers and community."
I certify that the work on this exam is entirely my own.
1. (10 points) Determine if the following statements are true or false.

a. False
The steady-state approximation assumes that an intermediate is consumed as soon as it is formed.

b. True
Molecules with a large value of the collision frequency also have a large value of the mean free path.

c. True
A molecule composed of three atoms has energy partitioned through electronic and translational states only.

2. (20 points) The lowest three electronic energy levels for the neon atom have the following energies and degeneracies:

<table>
<thead>
<tr>
<th>Level</th>
<th>Energy</th>
<th>Degeneracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>ε</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3ε</td>
<td>3</td>
</tr>
</tbody>
</table>

a) Determine the partition function for this system.

\[q = \sum_{i} q_i e^{-\beta E_i} = e^{-\beta(0)} + e^{-\beta \varepsilon} + 3e^{-3\beta \varepsilon} = 1 + e^{-\beta \varepsilon} + 3e^{-3\beta \varepsilon} = q \]

b) Plot \(q \) vs. \(T \) and be sure to indicate the low- and high-temperature limits.

as \(T \to 0 \), \(e^{-\beta \varepsilon} \to 0 \), \(q \to 1 \)

as \(T \to \infty \), \(e^{-\beta \varepsilon} \to 1 \), \(q \to 5 \)

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]

\[q \]

\[T \]

\[0 \]

\[\infty \]

\[5 \]

\[1 \]

\[5 \]
at both $T \to 0$ and $T \to \infty$, $p_1 + p_2 + p_3 = 1$

This is good.
3. (70 points) $\ce{N2O5}$ gas decomposes to $\ce{NO2}$ gas and $\ce{O2}$ gas.

a) Write the stoichiometrically balanced overall reaction equation.

$$2\ce{N2O5} \rightarrow 4\ce{NO2} + \ce{O2}$$

b) What is the velocity, collision frequency, and mean free path of $\ce{N2O5}$ at room temperature?

$$\text{FWC(}\ce{N2O5}\text{)} = 108.9 \text{ g/mol} = 0.108 \text{ kg/mol}$$

$$T = 300 \text{ K}$$

$$C = \left(\frac{3\sqrt{2} \text{((J/atom)}/(0.108 \text{ kg})})}{(0.108 \text{ kg/mol})}\right)^{\frac{1}{2}} = \left(6.88 \times 10^{-4} \text{ J/K}\right)^{\frac{1}{2}} = 262 \text{ m/s} = C$$

$$C_{rel} = \sqrt{2}C = 371 \text{ m/s}$$

$$Z_{coll} = \frac{\sqrt{2}C_{rel}P}{k_{B}T} = \frac{\sqrt{2}(3.0 \times 10^{-10} \text{ m})(371 \text{ m/s})}{(1.88 \times 10^{-21} \text{ J/K})(298 \text{ K})}$$

$$Z_{coll} = 2.6 \times 10^{-9} \text{ s}^{-1}$$

$$\lambda = \frac{C_{rel}}{Z_{coll}} = \frac{371 \text{ m/s}}{2.6 \times 10^{-9} \text{ s}^{-1}} = 1.4 \times 10^{-7} \text{ m} = \lambda$$

So the molecule moves $\sim 1000\times$ its diameter before colliding.

c) You are interested in the rate of this decomposition reaction. You measure the initial rate (v_0) of decay of a freshly prepared sample of $\ce{N2O5}$ and collect the following data:

<table>
<thead>
<tr>
<th>$[\ce{N2O5}]$ (mol L$^{-1}$)</th>
<th>v_0 (mol L$^{-1}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>2.1 \times 104</td>
</tr>
<tr>
<td>1.7</td>
<td>2.5 \times 104</td>
</tr>
<tr>
<td>4.1</td>
<td>6.1 \times 104</td>
</tr>
<tr>
<td>10.9</td>
<td>1.6 \times 105</td>
</tr>
</tbody>
</table>

$$v(t) = k_{obs} [\ce{N2O5}]^n$$

Determine the rate law and rate constant of this reaction, assuming integer reaction orders.

$$n = \ln \left(\frac{v_c}{v_0}\right) = \ln \left(\frac{2.1 \times 10^4}{2.5 \times 10^4}\right) = -0.170 = n$$

$$k_{obs} = \frac{v_0}{[\ce{N2O5}]} = \frac{2.1 \times 10^4 \text{ mol/L/s}}{1.4 \times 10^{-7} \text{ m}} = 1.5 \times 10^4 \text{ s}^{-1} = k_{obs} \text{ units}!$$

The following mechanism has been proposed to explain this reaction:

1) $\ce{N2O5} \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} \ce{NO2} + \ce{NO3}$

2) $\ce{NO2} + \ce{NO3} \overset{k_2}{\underset{k_{-2}}{\rightarrow}} \ce{NO2} + \ce{O2} + \ce{NO}$

3) $\ce{NO} + \ce{N2O5} \overset{k_{-3}}{\underset{k_3}{\rightarrow}} 3\ce{NO2}$

d) What are the intermediates of this mechanism?

$\ce{NO3} + \ce{NO}$
e) The remaining questions will be significantly simpler if you are able to ignore the back reactions of elementary steps 2 and 3 in the proposed mechanism. Provide a physical justification for doing so, in clear comprehensible English.

The back reactions for steps 2 and 3 are both [molecular], i.e., they require the collision of 3 molecules:

\[v(t) = k_2 [\text{NO}_2][\text{NO},][\text{NO}_2] \]
\[v(t) = k_3 [\text{NO}_2]^2 \]

This is going to be very unlikely on the time scale of \(k_1, k_2, k_3, \) and \(k_4 \).

Therefore, we will ignore \(k_2 + k_3 \).

f) The first step of this mechanism is believed to be rate-determining and the intermediates have never been observed experimentally. Using all of the information either given or inferred, prove that this mechanism is correct and determine \(k_{obs} \) in terms of the elementary reaction rate constants.

\[\frac{d[\text{NO}_2]}{dt} = k_1 [\text{N}_2\text{O}_5] - k_{-1}[\text{NO}_2][\text{NO}_3][\text{NO}_2] + k_2[\text{NO}_3][\text{NO}_2] + 3k_3[\text{NO}_2][\text{N}_2\text{O}_5] \]

\[\frac{d[\text{NO}_3]}{dt} = k_1[\text{N}_2\text{O}_5] - k_{-1}[\text{NO}_3][\text{NO}_2] - k_2[\text{NO}_2][\text{NO}_3] = 0 \]

\[\frac{[\text{NO}_3]}{[\text{N}_2\text{O}_5]} = \frac{k_1[\text{N}_2\text{O}_5]}{(k_{-1} + k_2)[\text{NO}_2]} \]

\[\frac{d[\text{NO}]}{dt} = k_2[\text{NO}_2][\text{NO}_3] - k_3[\text{NO}_2][\text{N}_2\text{O}_5] = 0 \]

\[\frac{[\text{NO}]}{[\text{N}_2\text{O}_5]} = \frac{k_2[\text{NO}_3][\text{NO}_3]}{k_3[\text{NO}_2]} \]

Plug intermediate into \(\frac{d[\text{NO}_2]}{dt} \):

\[\frac{d[\text{NO}_2]}{dt} = k_1[\text{N}_2\text{O}_5] - k_{-1}[\text{NO}_3] \left(\frac{k_1[\text{N}_2\text{O}_5]}{(k_{-1} + k_2)[\text{NO}_2]} \right) + k_2[\text{NO}_3] \left(\frac{k_1[\text{N}_2\text{O}_5]}{(k_{-1} + k_2)[\text{NO}_2]} \right) \]

\[+ 3k_3[\text{N}_2\text{O}_5] \left(\frac{k_2[\text{NO}_3]}{k_3[\text{NO}_2]} \left(\frac{k_1[\text{N}_2\text{O}_5]}{(k_{-1} + k_2)[\text{NO}_2]} \right) \right) \]

Over →
\[
\frac{d[\text{NO}_2]}{dt} = k_1 [\text{N}_2\text{O}_5] - k_{-1} k_1 [\text{N}_2\text{O}_5] + \frac{k_2 k_1 [\text{N}_2\text{O}_5]}{(k_{-1} + k_2)} + 3 \frac{k_1 k_2 [\text{N}_2\text{O}_5]}{(k_{-1} + k_2)}
\]

I.e. rate = \(v(t) = [\text{N}_2\text{O}_5] k' - [\text{N}_2\text{O}_5] k'' + [\text{N}_2\text{O}_5] k''' \)

\(v(t) = (k' - k'' + k''') [\text{N}_2\text{O}_5] \)

- We have demonstrated that the reaction is first order in [N₂O₅] as expected.

- The value of \(k_{obs} \) depends on what you assume from here. We could leave \(k_{obs} \) as is, or make a further simplifying assumption. If SSA is true, then either \(k_1 \) or \(k_2 \) must be very large. So

\[
\text{NO}_2 + \text{NO}_3 \xrightarrow{k_1} \text{N}_2\text{O}_5
\]

or

\[
\text{NO}_2 + \text{NO}_3 \xrightarrow{k_2} \text{NO}_2 + \text{O}_2 + \text{NO}
\]

- No additional information is given in the problem, although the \(k_2 \) rxn. will have a larger increase in entropy (2 moles \(\to \) 3 moles, instead of 2 moles \(\to \) 1 mole). You therefore might want to assume that \(k_2 \gg k_{-1} \), and simplify the above equation:

\[
\frac{d[\text{NO}_2]}{dt} = k_1 \frac{(k_2) [\text{N}_2\text{O}_5] - k_{-1} k_1 [\text{N}_2\text{O}_5]}{K} + \frac{k_2 k_1 [\text{N}_2\text{O}_5]}{K} + 3 \frac{k_1 k_2 [\text{N}_2\text{O}_5]}{K}
\]

\[
\frac{d[\text{NO}_2]}{dt} = \left(\frac{k_1 k_2 - k_{-1} k_1 + k_1 + 3 k_1}{K} \right) [\text{N}_2\text{O}_5]
\]